S. Shaw; H.V. Fuchs

Optischer Sensor für Schwingungen dünner Bauteile

Um die Schallabstrahlung, insbesondere von leichten Bauteilen, zu untersuchen, möchte man die wandnormalen Schwingungen \(v \) auf der gesamten Oberfläche \(A \) kennen. So lassen sich zum Beispiel Randeffekte und Schwachstellen in allen Einzelheiten erkennen. In Verbindung mit der abgestrahlten Schalleistung \(P \) kann man so das Bauteil u. a. durch seinen Abstrahlgrad [1].

\[
\sigma = \frac{P}{\rho c \bar{v}^2 A},
\]

kennzeichnen, wobei \(\bar{v}^2 \) das über \(A \) gemittelte Schallleistungskompliment und \(\rho c \) den Kennwiderstand von Luft bedeutet. Herkömmliche mechanische Abtastverfahren sind umständlich und zeitraubend und können die Schwingungen verfälschen. Holographie- und Laser-Doppler-Apparaturen wiederum sind relativ aufwendig und teuer.

Der LWL-Sensor

Das IBP hat deshalb mit Unterstützung durch die Deutsche Forschungsgemeinschaft einen einfachen und preisgünstigen optischen Sensor entwickelt, der auf die in der Bauakustik vorgegebenen Meßbedingungen und -geräte besonders zugeschnitten ist. Er benutzt handelsübliche...
Lichtwellenleiter (LWL) und eine simple Gleichstrom-Lampe (3,2 V / 0,1 A) als Lichtquelle.

\[e(t) = E_0 \cdot y(t). \]

Der Eichfaktor \(E_0 = 20 \, \text{mV} / \mu \text{m} \) wird an jedem Meßpunkt neu ermittelt, da er auch von Rauhigkeit und Reflexionsvermögen des jeweiligen Prüfflächen-Elements abhängt.

Das neue Meßsystem

Bild 4 zeigt die Meßeinrichtung im Türen-Prüfstand des IBP. Das Steuergerät der drei Schrittmotoren läßt sich so programmieren, daß eine Prüffläche (1,5 m x 2,5 m) in maximal je 255 Intervall-Schritten (Vielfache von 10 \(\mu \text{m} \)) automatisch in vorgegebenem Takt "abgetastet" werden kann. Das Sensor-Signal wird dem SD 375 Analyser zugeführt. Positionierung, Kalibrierung und akustische Analyse werden von einem HP 9826 Tischrechner mit 900 kByte-Speicher dirigiert, der über eine BCD-Schnittstelle mit der Steureinheit und über einen IEEE 488-Bus mit dem Prüfobjekt anregenden Rausch-Generator, dem Analyser sowie Drucker/Plotter als Ausgabeinheiten verbunden ist.

Die Auswertung aller in einem vollständigen Meßzyklus gespeicherten Daten kann nach folgenden Programmen erfolgen:

- Berechnung des (schmalbandigen) Schnelle spektroms \(v(f) \) aus dem Auslenkungsspek trum \(y(f) \)
- Bestimmung der Schwingungs-Amplitude in beliebigen Frequenzbändern
- Darstellung von Linien gleicher Amplitude zur Sichtbarmachung der Schwingungsformen (Bild 5)
- Ermittlung, des über A gemittelten Schnellequadrats \(v^2 \).

Bild 5:
Linien gleicher Amplitude auf einem 1 m x 2 m x 1 mm Alu-Blech

Literatur

FRAUNHOFER INSTITUT FÜR BAUPHYSIK
7000 Stuttgart 80, Noodstrasse 12, Tel. (0711) 6868 00
Außenstelle: 8150 Holzkirchen (OBB), Postf. 1180, Tel. (08024) 643 0

Herstellung und Druck: IBP Verlag, Informationszentrum RAUM und BAU der Fraunhofer-Gesellschaft, Stuttgart
Nachdruck nur mit schriftlicher Genehmigung des Fraunhofer-Instituts für Bauphysik