K. Kießl, J. Reiß

Schäden an historischer Wandmalerei — feuchtebedingt?
Untersuchungen an der Torhalle Lorsch

Die Torhalle des Klosters Lorsch besitzt auf der Innenseite der Obergeschosswände wertvolle karolingische und gotische Wandmalereien. Seit einiger Zeit ist zu beobachten, daß die Farbschichten Risse aufweisen und sich vom Untergrund ablösen. Durch chemische Untersuchungen sind Salzablagerungen auf diesen Wandoberflächen nachgewiesen worden, was auf einen verstärkten Feuchteaustausch an Stelle von Oberflächen zurückzuführen ist. Durch die Verdunstung von Wasser aus dem Oberflächenbereich, welches entweder durch vorherige Wasser dampfsorption oder durch andere Transportmechanismen dorthin gelangt ist, kristallisieren gelöste Salze aus und reichern sich allmählich dort an. Dies hat zur Folge, daß z.B. Salzschlieren entstehen oder Farbschichten abgehoben werden.

Folgende Phänomene sind als Ursachen für Feuchteverlagerungen und Feuchteänderungen in Betracht gezogen worden:

a) Aufsteigende Feuchte
 (bei hoher Bodenfeuchte, starker Kapillarwirkung im Mauerwerk und fehlenden Horizontalquerrinnen)

b) Eindringender Regen
 (bei mangelhaftem Regenschutz, Rissen u.ä.)

c) Feuchteneinwirkung vom Innenraum her
 (bei zeitweise hohen relativen Luftfeuchten und eventuellen Tauwasserbildungen an den Innenoberflächen)

Während eines einjährigen Untersuchungszeitraumes sollte festgestellt werden, ob und ggf. welche der erwähnten Feuchteneinwirkungen von Bedeutung sind und in welcher Weise ihnen im Hinblick auf eine Reduzierung der schädigenden Wirkung begegnet werden kann. Unter der Voraussetzung eines möglichst geringen zerstörenden Eingriffs in die historische Substanz des Objektes sind verschiedene Untersuchungen und Auswertungen durchgeführt worden.

Wandfeuchtetests

Um Anhaltspunkte dafür zu erhalten, ob Wasser aus dem Erdreich ins Mauerwerk gelangt und dort kapillar aufsteigt, sind an mehreren Plätzen in verschiedenen Wandhöhen und -tiefen Baustoffproben entnommen und deren Wassergehalte bestimmt worden. Bild 1 zeigt den Wassergehalt der Materialproben in Abhängigkeit von der Wandtiefe für die unteren und oberen Entnahmestellen. Starke aufsteigende Feuchte kann ausgeschlossen werden, da der maximale Wassergehalt in einer Tiefe von 2,10 m weniger als 1,5 M.-% beträgt und auch im unteren Bereich — wenn auch mit Streuungen — kein besonderer hoher Wassergehalt vorhanden ist.

Bild 1 Gemessene lokale Wassergehaltswerte in den außenseitigen Querschnittsbereichen der Außenwände in Höhen von 0,5 m und 2,10 m über Erdbodenoberfläche
Langzeit-Klimamessungen

Durch den natürlichen Luftaustausch mit feuchterer Außenluft und durch interne Feuchtproduktion (z.B. häufig größere Anzahl von Personen im Raum) kann es bei kalten Außenwänden und Oberflächen zur Erhöhung der relativen Luftfeuchte und im Extremfall zur Tauwasserbildung kommen. Um zu überprüfen, ob und wie intensiv dieser Effekt in der Hochfläche Lorsch auftritt, sind 12 Monate lang alle 30 Minuten Messungen der relativen Innen- und Außenluftfeuchten, der Innen- und Außenlufttemperaturen und der Wandoberflächentemperatur durchgeführt und die Meßwerte registriert worden. Mit diesen Größen ist die Taupunkttemperatur der Raumluft und die relative Luftfeuchte direkt an der Wandoberfläche zu ermitteln. Nähert sich die Oberflächentemperatur der Taupunkttemperatur der Raumluft, so steigt die relative Luftfeuchte an der Oberfläche gegen 100 %, bei Erreichen oder Unterschreiten der Taupunkttemperatur fällt Tauwasser aus. Tauwasser, aber auch bereits sehr hohe Luftfeuchten, führen zu einer Erhöhung der Sorptionsfeuchte in Putz- oder Malschichten, die später bei geringerer Raumluftfeuchte wieder abgegeben wird.

Bild 2 zeigt eine Häufigkeitsauswertung für die relative Luftfeuchte an der Wandinnenoberfläche im Meßzeitraum April 1984 bis April 1985. Je Monat sind diejenigen Zeitanteile prozentual angegeben, in denen der relative Luftdruck von 85 %, von 80 % und von 75 % erreicht und überschritten werden. So sind demzufolge z.B. in Dezember Werte von mindestens 75 % an der Oberfläche immer vorhanden gewesen und annähernd 18 Tage (≈ 60 % des Monatszeitraumes) wurden Werte von über 85 % tief erreicht. Tauwasserbildung ist in mehreren Fällen während der Wintomonate aufgetreten. Die untertiefe Säulenbereiche geben in kumulierter Darstellung an, in welchen prozentualen monatlichen Zeitanteilen die Wasserdampfkonzentration der Innenluft dabei größer oder kleiner war als die der Außenluft. In den Zeitanteilen mit c, > c0 hätte ein intensiver Luftaustausch eine Reduzierung der Luftfeuchte an der Oberfläche bewirkt. Für den betrachteten Monat Dezember wäre dies z.B. an 12 von 18 Tagen mit relativen Luftfeuchtigkeit über 85 % möglich gewesen.

Beurteilung und praktische Konsequenzen

Die Untersuchungen gezeigt haben, sind die Feuchtbeschaltungen an Wandinnenoberflächen und die damit verbundenen Schädigungen der Wandgemälde auf zyklisch schwankende relative Luftfeuchten direkt an den Oberflächen – mit häufig auftretenden Spitzenwerten über 85 % tief und in gelegentlichen Tauwasserbildungen während der Wintersonate zurückzuführen. Entsprechend vorliegenden Erfahrungen kann dieser Effekt mit einer einfachen aber gezielt gesteuerten und kontrollierten Raumlüftung wesentlich reduziert und möglicherweise sogar völlig unterbunden werden [1]. Dabei steuert ein einfaches, über Temperatur- und Feuchtigkeitswerte geregeltes Mikroprozessorelement ein unaufhörlich installiertes Gebläse dann an, wenn ein vorgegebener Sollwert für die relative Luftfeuchte an der Wandoberfläche überschritten wird und die absolute Raumluftfeuchte gleichzeitig größer als die absolute Außenluftfeuchte ist. Wie aus Bild 2 ersichtlich, liegt dieser Zustand im Jahresverlauf und für die betrachteten Bereiche der Wandinnenluftfeuchte in fast allen Monaten mit einem zeitlichen Anteil von über 50 % vor. Der Luftaustausch kann über natürliche Tür- und Fensterfugen erfolgen, das Öffnen von Türen oder Fenstern sollte jedoch kontrolliert geschehen.

Zu überprüfen wäre bei einer derartigen Maßnahme allerdings auch, ob der gewollte Trocknungseffekt nicht zu einer zu starken und zu schnellen Austrocknung der Wandoberflächen und dadurch zu anderen Schädigungen der Wandgemälde führt. Eine entsprechende Ergänzung des Steuerelementes mit einer vorgegebenen Begrenzung der gewünschten Luftfeuchteverhältnisse nach unten hin könnte dies jedoch auf einfache Weise bewirken.

Die Untersuchungen wurden im Auftrag des Landes Hessen, vertreten durch das Staatsbaubamt Darmstadt, durchgeführt.

Literatur

IBP-Mitteilung 103, Fraunhofer-Institut für Bauphysik (1985)