Projects and References

New projects at a glance

Here we list the newly added projects.

 

Solar water desalination

The development of solar water desalination plants is a promising approach to sustainable water treatment in water-scarce regions. At the Fraunhofer Institute for Building Physics IBP, several projects have been carried out in order to advance this technology. The aim was to evaluate the technical feasibility, identify optimisation potential and create the basis for market maturity.

 

Transparent Enclosures for Art Objects and Monuments

Every year, numerous art objects and monuments are enclosed to protect them against the weather, typically using wooden structures. The project partners have therefore developed a modular enclosure system for outdoor cultural assets exposed to the elements, using transparent membranes and an innovative ventilation system. 

 

The Wild Climate Wall

he Wild Climate Wall is an innovative green facade system designed to enhance biodiversity and climate resilience in densely built urban environments. By integrating native wild shrubs, herbs, and grasses, along with specially selected modular habitat systems (providing breeding and nesting spaces for wild bees, birds, and bats), the Wild Climate Wall offers a unique and heterogeneous diversity of plants and structures for vertical greening. 

 

Climate Adaptation in Cultural Institutions

As part of the pilot project “Climate Adaptation in Cultural Institutions”, 20 cultural institutions, including museums, libraries, theaters, socio-cultural institutions and park facilities, are being examined with regard to their vulnerability to location-specific climate-related changes, and climate adaptation measures are being developed.

All projects at a glance

Here we list our current as well as successfully completed research and industrial projects.

Cancel
  • The overall objective of the CoolDown project is to collect and validate suitable measures for the rapid and practicable transformation of heating networks with a focus on the secondary side and (existing) buildings. To this end, the technical, regulatory and economic requirements will be identified and evaluated in detail.

    more info
  • Building with wind-powered heating 2.0 – solutions
    © Bayerisches Landesamt für Umwelt

    Possible solutions for using a building with wind-powered heating 2.0 with a large hot water storage tank (A), building component activation (B) and a central high-temperature stone storage tank (C).

    The aim of the research study is to develop concepts for »Buildings heated by wind-power«, which are heated during periods of strong wind only.

    more info
  • This project shows that local, close-to-body air-conditioning measures can be more energy efficient and more comfortable than conventional air-heating.

    more info
  • Test setup
    © Fraunhofer IBP

    Test setup in the HiPIE laboratory in Stuttgart.

    The HiPIE laboratory enables the conditioning of the environmental conditions acoustics, lighting, room climate and air quality on a room area of approx. 45 sqm.

    more info
  • Measurement sample  to determine the emitted scattered radiation in the UV-A range
    © Fraunhofer IBP

    Measurement sample of the prototype, installed in the integrating sphere of the Fraunhofer IBP, to determine the emitted scattered radiation in the UV-A range.

    Effective disinfection technologies have been an important topic not only since the Covid-19 pandemic but have increasingly been in the public spotlight since then. The basic idea of this project was to further develop a glass coated with titanium dioxide (TiO2), which generates reactive oxygen species through a photocatalytic process and thus reduces the viral and bacterial load, into a practically applicable transparent virus protection element. Fraunhofer IBP, in collaboration with Fraunhofer IGB and other project partners, has developed a product-oriented prototype that increases this effect through edge coupling UV-A radiation via LEDs and laser microstructuring. The virus protection glass can improve hygiene at sales counters, in kitchens, in refrigerators or in the medical field.

    more info
  • Daylight control using new micro-optical structures
    © Fraunhofer IBP

    Daylight control using new micro-optical structures in the façade/window area and on the ceiling in a classroom of the “Krefeld School” demonstration building.

    Micro-optical components for daylight utilization and sun shading can significantly improve energy efficiency, life cycle assessment and quality of life in buildings. A structure for vertical façades has already been pre-developed in dimensions suitable for building applications that directs daylight to areas deep inside a building without glare. This is currently being tested in demonstration buildings. Research is being carried out into new structures for effective sun shading in skylights.

    more info