Projects and References

New projects at a glance

Here we list the newly added projects.

 

PreNoise Wood

With the growing importance of sustainable construction and increasing demands for comfort and efficiency, timber and lightweight buildings are becoming more prevalent. However, these construction types pose specific challenges in terms of noise transmission from technical building systems. To address this issue, the Fraunhofer IBP is developing the “PreNoise Wood” research project - a groundbreaking method for predicting and reducing installation noise in resource-efficient buildings.

 

Wall Heating on Interior Insulation

If wall heating systems are installed on exterior walls in existing buildings, additional interior insulation is particularly advisable. It makes sense to consider the system as a whole as a highly energy-efficient wall heating and interior insulation hybrid system (H-WIHS). To ensure this is successful, 10 manufacturing companies and 2 trade associations are working together with the Fraunhofer IBP in a project funded by the BMWK.

 

Solar water desalination

The development of solar water desalination plants is a promising approach to sustainable water treatment in water-scarce regions. At the Fraunhofer Institute for Building Physics IBP, several projects have been carried out in order to advance this technology. The aim was to evaluate the technical feasibility, identify optimisation potential and create the basis for market maturity.

 

Transparent Enclosures for Art Objects and Monuments

Every year, numerous art objects and monuments are enclosed to protect them against the weather, typically using wooden structures. The project partners have therefore developed a modular enclosure system for outdoor cultural assets exposed to the elements, using transparent membranes and an innovative ventilation system. 

All projects at a glance

Here we list our current as well as successfully completed research and industrial projects.

Cancel
  • Noise transmission from building services
    © Fraunhofer IBP

    Noise transmission from building services in timber and lightweight construction.

    With the growing importance of sustainable construction and increasing demands for comfort and efficiency, timber and lightweight buildings are becoming more prevalent. However, these construction types pose specific challenges in terms of noise transmission from technical building systems. To address this issue, the Fraunhofer IBP is developing the “PreNoise Wood” research project - a groundbreaking method for predicting and reducing installation noise in resource-efficient buildings. Based on the successful outcomes of the “ProSa” project for solid construction, “PreNoise Wood” adapts and extends those methods specifically for timber and lightweight structures. The goal is to create scientifically sound and practically applicable solutions, especially for small and medium-sized enterprises (SMEs), enabling early-stage acoustic optimization of building components and technical systems, and providing reliable planning tools for noise prediction - a clear benefit for building owners, manufacturers, and planners.

    more info
  • Flagship Project BAU DNS

    IBP, IEC, IFF, IGD, IPM, ISE, UMSICHT

    The Fraunhofer-Gesellschaft addresses the current challenges facing German industry. Through its flagship initiatives, it sets strategic priorities aimed at developing practical, market-ready solutions to benefit Germany as a location for innovation. The thematic focus of these initiatives is aligned with the needs of industry. The goal is to rapidly transform scientifically innovative ideas into marketable applications. The participating Fraunhofer institutes pool their expertise and actively involve industry partners from the project's outset.

    more info
  • Logo of the joint project BUOLUS.
    © Fraunhofer IBP

    Logo of the joint project BUOLUS.

    Municipalities are faced with the challenge of adapting to climate change. On the one hand, they have to choose effective and sustainable measures, and on the other hand, they have to take into account the interests of residents and act under cost pressure. Key areas where cities need to take action include structural and spatial design and urban use of land. More about this in the Buolus project.

    more info
  • Schematische Darstellung der Funktionsweise von Wandaufbau mit Wandheizung
    © Fraunhofer IBP

    Bild links: Schematische Darstellung der hygrothermischen Wirkung einer Wandheizung mit Innendämmung an einer Bestandswand montiert. Bild rechts: Schematische Darstellung mit vertikalem Schnitt durch einen Wandaufbau mit Wandheizung auf Innendämmung (H-WIHS) mit Bezeichnung der Bauteilschichten.

    When wall heating systems are installed on exterior walls in existing buildings, adding interior insulation is particularly beneficial. It reduces heat loss through the exterior wall and, at the same time, allows a transition to surface heating systems, which offer enhanced thermal comfort, lower flow temperatures, and better integration with renewable energy sources. This combination is best approached as a comprehensive, highly energy-efficient Wall Heating-Interior Insulation Hybrid System (H-WIHS). To realize this concept, 10 manufacturing companies and 2 trade associations are working in close collaboration with Fraunhofer IBP in a project funded by the German Federal Ministry for Economic Affairs and Climate Action (BMWK). The implementation of six real-world test areas at the Fraunhofer Center in Benediktbeuern enables a broad-based study and demonstration aimed at knowledge transfer.

    more info
  • Prototype in the Fraunhofer IBP laboratory.
    © Fraunhofer IBP

    Window with integrated prototype of the intelligent External Air Vent (EAV).

    Ventilation systems in the home must fulfill more and more requirements. In order to meet both energy and sound insulation requirements, an ever-increasing proportion of ventilation concepts have to be designed with fan-assisted systems. A fan-assisted exhaust air system in accordance with DIN 1946-6 is comparatively inexpensive and easy to install. With this system, the exhaust air is removed by fans in the rooms and replaced passively by an inflow of fresh air from external air vents (EAV). However, due to the increasingly airtight construction of new buildings, an ever-higher volume flow is needed. The high air flow means that sound insulation requirements cannot always be met. This is often particularly a problem in (inner) cities.

    more info